

## **Discrete Mathematics 2025 Spring**



魏可佶 kejiwei@tongji.edu.cn





- 9.1 Binary Operations and Their Properties
- 9.2 Algebraic Systems
- 9.3 Several Typical Algebraic Systems





### 9.1.1 Binary and Unary Operations

- Definition of Binary Operations and Examples
- Definition of Unary Operations and Examples
- Notation of Operations

## 9.1.2 Properties of Binary Operations

- Commutativity, Associativity, Idempotency, Distributivity, Absorption.
- Special Elements: Identity Element, Zero Element, Invertible Element.
- Cancellation Laws





- Definition 9.1:Let S be a set. A function f: S×S→S is called a binary operation on S, or simply a binary operation. We also say that S is closed under f.
   Examples:
- (1) Binary operations on the set of natural numbers N: addition and multiplication. Note: Subtraction and division do not satisfy closure, as the result may not be a natural number.
- (2) Binary operations on the set of integers **Z**: addition, subtraction, and multiplication.

**Note:** Division may produce non-integer results, thus lacking closure.

(3) Binary operations on the set of nonzero real numbers R\*: multiplication and division.

Note: Addition and subtraction do not satisfy closure, as results can include zero.



## 9.1.1 Binary and Unary Operations Examples of Binary Operations

## Examples:

(4) Let  $S = \{a_1, a_2, ..., a_n\}, a_i \circ a_j = a_{i,j} \circ is$  a binary operation on S. (5) Let  $M_n(\mathbf{R})$  denote the set of all  $n \ (n \ge 2)$  real matrices, then

$$M_{n}(\mathbf{R}) = \begin{cases} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} & a_{ij} \in \mathbf{R}, \ i, j = 1, 2, \dots, n \end{cases}$$

Matrix addition and multiplication are both binary operations on M<sub>n</sub>(R).
(6) Binary operations on the power set P(S): U、∩、−、⊕.
(7) S<sup>s</sup> be the set of all functions from S, the composition operation • is a binary operation on S<sup>s</sup>.







- **Definition 9.2:** Let **S** be a set, A function  $f: S \rightarrow S$  is called a *unary operation* on **S**, or simply a unary operation.
  - More generally, a function  $f: S \times S \times ... \times S \to S$  is called an *n*-ary operation on S, or simply an *n*-operation.
- **Examples:** The following are all unary operations:
  - (1) The *negation* (taking the additive inverse) operation on Z, Q and R.
  - (2) The *reciprocal* (taking the multiplicative inverse) operation on the set of nonzero rational numbers **Q\*** and the set of nonzero real numbers **R\*.**
  - (3) The *complex conjugate* operation on the set of complex numbers C.
  - (4) On the power set P(S) with universe S, the absolute complement operation~.
  - (5) Let A be the set of all bijective functions on  $S \land A \subseteq S^S$ , the *inverse* function operation.
  - (6) On  $M_n(\mathbf{R})$  ( $n \ge 2$ ) the matrix transpose operation.







- Operators: •, \*, •, ⊕, ⊗ are used to denote binary or unary operations.
  - For a **binary operation** , if **x** and **y** operate to produce **z**, it is denoted as **x**•**y**=**z**.
  - For a *unary operation* •, the result of applying it to x is written as •x.
  - For an *n*-ary operation, we write  $\circ(a_1, a_2, ..., a_n)=b$ .
- Ways to represent binary or unary operations: formulas, operation tables.
  - **Note:** In the same problem or context, different operations should be represented using different operator symbols.



## 9.1.1 Binary and Unary Operations Formula and Table Representations of Operations



### **Formula Representation**

• Example: Let R be the set of real numbers. Define a binary operation R as:  $\forall x, y \in R, x * y = x$ . Such as: 3 \* 4 = 3, 0.5 \* (-3) = 0.5

Tables Representation: used to represent unary and binary operations on finite sets.

Unary Operations

#### <sup>s</sup> Operation Table for Binary Operations

|                       |                        | -                     |                 |                | - |                 |
|-----------------------|------------------------|-----------------------|-----------------|----------------|---|-----------------|
|                       | oai                    | 0                     | $a_1$           | $a_2$          |   | a <sub>n</sub>  |
| $a_1$                 | $\circ a_1$            | $a_1$                 | $a_1 \circ a_1$ | $a_1 o a_2$    |   | $a_1 o a_n$     |
| <i>a</i> <sub>2</sub> | <i>◦a</i> <sub>2</sub> | <i>a</i> <sub>2</sub> | $a_2 o a_1$     | $a_2 o a_2$    |   | $a_2 o a_n$     |
| •••                   | •••                    | •••                   |                 |                |   |                 |
| <i>a</i> <sub>n</sub> | $\circ a_{\rm n}$      | a n                   | $a_{n} oa_{1}$  | $a_{n} oa_{2}$ |   | $a_{n} o a_{n}$ |





Example: Set S= {a,b}, Provide the operation tables 

 and
 ~ on the power set P(S).

le

| <b>⊕</b> 0              | peratio      | on Tabl      | е            |              | ~Opera       | ation Tab    |
|-------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $\oplus$                | Ø            | <i>{a}</i>   | { <b>b</b> } | <i>{a,b}</i> | X            | <b>~</b> X   |
| Ø                       | Ø            | <i>{a}</i>   | <i>{b}</i>   | <i>{a,b}</i> | Ø            | <i>{a,b}</i> |
| $\{a\}$                 | <i>{a}</i>   | Ø            | <i>{a,b}</i> | { <b>b</b> } | <i>{a}</i>   | { <i>b</i> } |
| { <i>b</i> }            | { <i>b</i> } | <i>{a,b}</i> | Ø            | <i>{a}</i>   | { <i>b</i> } | <i>{a}</i>   |
| { <i>a</i> , <i>b</i> } | $\{a,b\}$    | <i>{b}</i>   | <i>{a}</i>   | Ø            | $\{a,b\}$    | Ø            |



# 9.1.1 Binary and Unary Operations Example of Operation Table Representation



■ Example: Let Z<sub>5</sub>= { 0, 1, 2, 3, 4 }, ⊕, ⊗ represent addition and multiplication modulo 5, respectively.

**Operation Table** 

| $\oplus$ | 0 | 1 | 2 | 3 | 4 |
|----------|---|---|---|---|---|
| 0        | 0 | 1 | 2 | 3 | 4 |
| 1        | 1 | 2 | 3 | 4 | 0 |
| 2        | 2 | 3 | 4 | 0 | 1 |
| 3        | 3 | 4 | 0 | 1 | 2 |
| 4        | 4 | 0 | 1 | 2 | 3 |

| $\otimes$ | 0 | 1 | 2 | 3 | 4 |
|-----------|---|---|---|---|---|
| 0         | 0 | 0 | 0 | 0 | 0 |
| 1         | 0 | 1 | 2 | 3 | 4 |
| 2         | 0 | 2 | 4 | 1 | 3 |
| 3         | 0 | 3 | 1 | 4 | 2 |
| 4         | 0 | 4 | 3 | 2 | 1 |



## 9.1 Binary Operations and Their Properties

#### 同济经管 TONGJI SEM

## 9.1.1 Binary and Unary Operations

- Definition of Binary Operations and Examples
- Definition of Unary Operations and Examples
- Notation of Operations

## 9.1.2 Properties of Binary Operations

- Commutativity, Associativity, Idempotency, Distributivity, Absorption.
- Special Elements: Identity Element, Zero Element, Invertible Element.
- Cancellation Laws



- 9.1.2 Properties of Binary Operations Binary Operation: Commutative, Associative, Idempotent Laws<sup>の TONGJISEM</sup>
  - Definition 9.3: Let be a binary operation on S ,
     (1) If for all x, y∈S , x y = y x, then the operation is said to satisfy the commutative law (or is commutative) on S.
    - (2) If for all x, y, z∈S, (x ∘ y) ∘ z = x ∘ (y ∘ z), then the operation is said to satisfy the *associative law* (or is associative) on S.
    - (3) If for all  $x \in S$ ,  $x \circ x = x$ , then the operation is said to satisfy the *idempotent law* (or is *idempotent*) on *S*.





Example: Z, Q, R denote the sets of integers, rational numbers, and real numbers, respectively. M<sub>n</sub>(R) denotes the set of all n×n real matrices, n≥2, P(B) power set , A<sup>A</sup> set of all functions from A to A, |A|≥2.

| Set               | Operations | <b>Commutative law</b> | Associative law | Idempotent law |
|-------------------|------------|------------------------|-----------------|----------------|
|                   | +          | Yes                    | Yes             | No             |
| <i>L</i> , Ų, K   | ×          | Yes                    | Yes             | No             |
| <i>M</i> (D)      | +          | Yes                    | Yes             | No             |
| $M_n(\mathbf{K})$ | ×          | No                     | Yes             | No             |
|                   | U          | Yes                    | Yes             | Yes            |
|                   | $\cap$     | Yes                    | Yes             | Yes            |
| F(B)              | _          | No                     | No              | No             |
|                   | $\oplus$   | Yes                    | Yes             | No             |
| $A^A$             | 0          | No                     | Yes             | No             |





Definition 9.4: Let • and \* be two distinct binary operations on S ,

 (1) If for all x, y, z∈S
 (x \* y) • z = (x • z) \* (y • z)
 z • (x \* y) = (z • x) \* (z • y)
 then we say that the operation • distributes over the operation \*.
 (2) If both • and \* are commutative, and for all x, y∈S

 $x \circ (x * y) = x$ 

$$x * (x \circ y) = x$$

then we say that the operations • and \* satisfy the *absorption law*.



9.1.2 Properties of Binary Operations
 b Distributive & Absorption Laws (Two Binary Operations)(e.g.



**Example: Z, Q, R d**enote the sets of integers, rational numbers, and real numbers, respectively;  $M_n(\mathbf{R})$  denotes the set of all  $n \times n$  real matrices,  $n \ge 2$ , P(B) power set,  $A^A$  set of all functions from A to A,  $|A| \ge 2$ .

| Set                      | Operations            | Distributive Law                  | Absorption Law |  |
|--------------------------|-----------------------|-----------------------------------|----------------|--|
|                          |                       | × to + distribute                 | No             |  |
| Ζ,Ų,Κ                    |                       | + to × Not distribute             | NU             |  |
| <i>M<sub>n</sub></i> (R) | Matric Land matric V  | × to + distribute                 | No             |  |
|                          | Matric + and matric × | + to × Not distribute             | INO            |  |
| P(B)                     | L Land o              | $\cup$ to $\cap$ distribute       | Voc            |  |
|                          |                       | $\cap$ to $\cup$ distribute       | ies            |  |
|                          | $\circ$ and $\oplus$  | ∩ to ⊕ distribute                 | Ne             |  |
|                          |                       | $\oplus$ to $\cap$ Not distribute | INU            |  |

